Klasifikasi Tumor Otak Menggunakan Local Binary Pattern dan SVM Classifier

Authors

  • Wahyu Ardiantito S Universitas Negeri Medan
  • Stacyana Jesika Surianto Universitas Negeri Medan
  • Suci Ramadhani Universitas Negeri Medan
  • Willy Pramudia Ananta Universitas Negeri Medan

DOI:

https://doi.org/10.55606/srjyappi.v1i6.823

Keywords:

Brain Tumor, SVM, Local Binary Pattern

Abstract

Brain tumors are abnormal cell growths in brain tissue that can be life-threatening. This study aims to classify brain tumors to help early diagnosis. The method used is to extract features from brain MRI images using Local Binary Pattern (LBP) and then classified with Support Vector Machine (SVM). The data used were 2044 brain MRI images consisting of 3 classes namely meningioma, no tumor, and pituitary. The best results were obtained using LBP with a radius of 1 and the number of neighbors 8, while the best SVM model used the RBF kernel with a C value of 50, resulting in 88% accuracy, 86% precision, and 87% recall. It can be concluded that the combination of LBP and SVM methods is effective enough to classify brain tumor types to support early diagnosis.

References

Ainani Shabrina Febrianti, Tri Arief Sardjono, & Atar Fuady Babgei. (2020). Klasifikasi Tumor Otak pada Citra Magnetic Resonance Image dengan Menggunakan Metode Support Vector Machine. Jurnal Teknik ITS, Vol. 9, No(1).

Amalia, K., Magdalena, R., & Saidah, S. (2022). Klasifikasi Penyakit Tumor Otak Pada Citra Mri Menggunakan Metode CNN Dengan Arsitektur Alexnet. E-Proceeding of Engineering, 8(6), 3247–3254.

Andre, R., Wahyu, B., & Purbaningtyas, R. (2021). Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3. Jurnal IT, 11(3), 55–59. https://jurnal.umj.ac.id/index.php/just-it/index

Baranwal, S. K., Jaiswal, K., Vaibhav, K., Kumar, A., & Srikantaswamy, R. (2020). Performance analysis of Brain Tumour Image Classification using CNN and SVM. Proceedings of the 2nd International Conference on Inventive Research in Computing Applications, ICIRCA 2020, 537–542. https://doi.org/10.1109/ICIRCA48905.2020.9183023

Han, J., Kamber, M., & Pei, J. (2012). Techniques to Improve Classification Accuracy. In Data Mining, Concepts and Techniques.

Hungerford, J. L., & Plowman, P. N. (2014). Central nervous system. Treatment of Cancer, Sixth Edition, 33–56. https://doi.org/10.1201/b17751-2

Malkin, M. G., & Shapiro, W. R. (1988). Brain tumors. Cancer Chemotherapy and Biological Response Modifiers, 10, 355–375.

McCartney, P. R. (2015). Big Data Science. In MCN The American Journal of Maternal/Child Nursing (Vol. 40, Issue 2). https://doi.org/10.1097/NMC.0000000000000118

Purwati, R., & Ariyanto, G. (2017). Pengenalan Wajah Manusia berbasis Algoritma Local Binary Pattern. Emitor: Jurnal Teknik Elektro, 17(2), 70–79. https://doi.org/10.23917/emitor.v17i2.6232

Suta, I. B. L. M., Hartati, R. S., & Divayana, Y. (2019). Diagnosa Tumor Otak Berdasarkan Citra MRI (Magnetic Resonance Imaging). Majalah Ilmiah Teknologi Elektro, 18(2). https://doi.org/10.24843/mite.2019.v18i02.p01

T. Ojala, M. Pietikäinen, and T. M. (n.d.). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. 24.

Downloads

Published

2023-12-05

How to Cite

Wahyu Ardiantito S, Stacyana Jesika Surianto, Suci Ramadhani, & Willy Pramudia Ananta. (2023). Klasifikasi Tumor Otak Menggunakan Local Binary Pattern dan SVM Classifier. Student Research Journal, 1(6), 182–190. https://doi.org/10.55606/srjyappi.v1i6.823